

Factors influencing King Eider winter movements in the Bering Sea

Steffen Oppel Department of Biology and Wildlife, University of Alaska, Fairbanks, AK, USA

> Lynne Dickson Canadian Wildlife Service, Edmonton, Canada

Abby Powell

U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Fairbanks, AK, USA

- Sea-ducks winter at sea
- forage on benthic prey by diving to sea bed
- winter in areas that become ice covered

• 'home range' used in winter generally small:

Harlequin Duck (ind) ~ 12 km² (Iverson and Esler 2006)

Common Eider (ind) ~ 50 km² (Merkel et al. 2007)

Spectacled Eider (pop) ~ 2,900 km² (Petersen and Douglas 2004)

• King Eider winter 'movement range' > 12,000 km²

Background – King Eiders

Why do King Eiders leave wintering sites?

What factors affect the decision of individual King Eiders to move away from a wintering site in the Bering Sea?

- PTT implanted on breeding grounds in June
- 94 King Eiders tracked throughout winter
- winter movement defined as > 50 km

Sea ice difference at departure location

Sea Ice difference: Sea ice conc. time=b – Sea ice conc. time=a = 90% - 60% = **30%**

Methods – food availability

Modeled benthic biomass in Bering Sea (g/m²)

Predictor variables:

Sea Surface Temperature Sea ice coverage Depth

- 240 random points of stationary birds
- for each location data for 8 variables
 - sex
- logistic regression with ID as fixed effect
 - latitude
 - day length
- AIC model selection

Model	AIC	ω,
Sea ice dif (-), day length (+), sea ice bef*dif (-), sea ice dif*lat (+), sea ice dif *day length (-)	0.0	0.27
Sea ice dif (-), day length (+), sea ice bef*dif (-), sea ice dif*lat (+), sea ice dif *day length (-), benthic biomass (+)	1.13	0.13
Sea ice dif (-), day length (+), sea ice bef*dif (-), sea ice dif*lat (+), sea ice dif *day length (-), benthic biomass (+), body size (-)	1.27	0.12

- day length (+), sea ice difference (-)
- sea ice interactions
- models without 'ID' performed poorly

- large individual variation in response
- movements not when conditions deteriorate
- movements may be of exploratory nature

Acknowledgements

US Fish and Wildlife Service Canadian Wildlife Service Minerals Management Service Sea Duck Joint Venture Coastal Marine Institute North Slope Borough Conoco Phillips, AK USGS **ABR**, Inc. Service Argos, Inc. **Microwave Telemetry, Inc. German Academic Exchange Service (DAAD) Troy Ecological Research Associates, Inc. Alaska Cooperative Fish and Wildlife Research Unit**

Robert Suydam Dave Douglas Dave Verbyla Rebecca Bentzen Andrea Hoover Falk Huettmann Jay ver Hoef **Ron Barry Ed Debevec** and a large number of field assistants...

Questions?

