Carbon isotope turnover as a measure of arrival time in migratory birds

Steffen Oppel
Abby Powell

University of Alaska Fairbanks

U.S.G.S. Alaska Cooperative Fish and Wildlife Research Unit

Arrival time matters

- arrival time important fitness metric
- early arrival = high fitness

difficult to assess in the field

new approach needed

Stable Carbon Isotopes (δ^{13} C) in blood

- δ^{13} C in blood reflects δ^{13} C in diet
- if diet changes, δ^{13} C in blood changes (turnover)

Arrival time estimation

- if birds arrive at new habitat → diet changes
- ullet use change in blood $\delta^{13}{
 m C}$ to estimate arrival time

Arrival time estimation

- if birds arrive at new habitat → diet changes
- use change in blood δ^{13} C to estimate arrival time

Does the theoretical turnover model provide reliable estimates of *t*:

- 1. in controlled captive experiments?
- 2. in a field application?

Captive experiments - methods

- data from 5 published studies of isotope turnover
- estimated k from body mass of birds
- estimated time since diet switch (t) as:

$$t = \frac{(\ln(\delta^{13}C(t) - \delta^{13}C_{new diet}) - \ln(\delta^{13}C(t) - \delta^{13}C_{old diet})}{-k}$$

Captive experiments - results

- very good prediction for first 3 weeks
- potentially large error after > 3 weeks

Field application - background

- King Eiders migrate at sea and breed on tundra
- ullet marine and tundra diet differ in $\delta^{13}{
 m C}$

breeding site

spring staging area

Field application - methods

- captured birds in June
- sampled blood
- measured δ^{13} C in RBC

Field application - results

Field application - results

arrival dates of satellite-tracked birds

estimated arrival dates

capture dates

Conclusions

- isotope turnover in blood can be used to estimate arrival time
- reliable for ~3 weeks after arrival

Limitations and caveats

- habitats must be isotopically distinct
- diets from both habitats must be sampled
- birds must forage upon arrival in new habitat

Acknowledgements

Questions?

Photo credits: Anupam Pal, Steve Baraff, Chao Rospech, Steve Axford, Ted Swem